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Motivation

The vibrations induced in an elastic panel from an incident acoustic
pressure wave are a function of the resonant mode structure of the panel
and the angle of incidence of the acoustic wave. In this paper it has been
demonstrated how measurement of the panel’s modal response with a
single structural vibration sensor may be employed to infer the direction
of arrival (DOA) of the incident sound. The method is dependent on the
frequency content of the acoustic wave, as modes that provide important
spatial information about the source may not be excited if the acoustic
signal lies outside their resonant bandwidths. This work explores
techniques for extending this single-sensor approach to DOA estimation
for speech signals, which represent a realistic use case for applications
such as smart audio devices. Feature sets including Mel spectrograms,
Mel-frequency cepstral coefficients (MFCCs), and linear spectrograms,
were used to train convolutional and feedforward neural networks to
estimate the DOA of a wake word recorded by a single structural
vibration sensor affixed to a panel. The experiments were carried out in
semi-anechoic conditions and are thus presented as proof of concept.
Additionally, the models presented are compact enough to be deployed
on embedded/edge hardware commonly used in smart audio devices.
The trained models estimated the DOA of the wake word utterance to
within ±5° with an average reliability of 83.1% when using MFCCs as
features. This average reliability improved to 92.23%, with a maximum
reported reliability of 99.9%, when using Mel and magnitude
spectrograms and an additional hardware-specific feature set, suggesting
that single-sensor DOA estimates for speech signals may be improved by
using more spectrally complete feature sets.

Smart acoustic surfaces allow 
for seamless integration of a 

smart speaker into existing 
environments, as any surface 
(such as picture frames and 

artwork) can be used

Mounting sensors internally 
to the display eliminates the 
need for case penetrations, 
improving the device’s water 

resistance and durability

Smart devices with display 
panels can include higher-

fidelity audio without 
changing form factor by 

using their screen’s surface 
for audio reproduction

Extended surfaces allow
for signal processing 

advantages, as sensors can 
be placed further apart than 

the standard 1-4 cm on 
modern smart devices

By coupling to a modal 
surface, direction of arrival 

estimation and beamforming 
can occur with as few as one 

sensor, which can lower 
manufacturing cost
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Feature Extraction, Model Training, and Experimental Results
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The reliability with which each model estimated the DOA of the speech
source to within various angular tolerances is tabulated at right. The
trained CNN models demonstrated the ability able to estimate the DOA
of both participant’s voices to within ±5° with up to 98.3% reliability
using a single structural vibration sensor. The FNNs trained with the
non-proprietary feature sets were able to estimate the DOA of both
participant’s voices to within ±5°with up to 94.3% reliability.

The FNN trained with the proprietary feature set created for the Syntiant
hardware performed very well, estimating the DOA of both participant’s
voices to within ±5° with up to 99.9% reliability. Although this feature set
is currently device-specific, the reported reliability of models trained
with this hardware-informed feature set is an important result that may
lead to the development of an optimized, full-stack system.

z

Selected mel-frequency cepstral coefficients (MFCCs) extracted from
recordings of an elastic panel’s vibrational response to acoustic waves
containing the speech sound “eh” incident at −30°, 0°, and 45°, measured
using a single structural vibration sensor. This figure demonstrates that the
MFCCs are dependent on the incident angle of the acoustic wave. A neural
network may therefore utilize an MFCC vector to create decision boundaries
and estimate the DOA of the excitation using information from a single
structural vibration sensor.

z

Tabulated is the average reliability of the DOA
estimates made by a recurrent neural network
trained with MFCC feature vectors extracted from
recordings of a panel’s vibrational response to
incident speech sounds. The recordings were made
using 1, 3, and 5 structural vibration sensors. The
results demonstrate that MFCC feature vectors can
be employed to reliably estimate DOA using data
from a single structural vibration sensor.

Results are reproduced from 
our recent publication in the 

Journal of Sound and 
Vibration, linked here  
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Figure 2: (a) Examples of the feature vectors extracted from the wake word recordings made by the panel using Edge Impulse [17]. The
same features were also extracted locally for offline training of the CNN. (b) The architecture of the CNN used in this experiment. (c) The
architecture of the FNN that is compatible with the Syntiant hardware [18].

commercially available edge device that features an always-on neu-
ral decision processor (NDP) for performing wake word detection
and other real-time speech processing tasks [18].

3.3.2. Model Architecture

The models trained in this work employ two architectures that are
compatible with TinyML, and are compact enough to be embedded
on commercially available edge devices. The first of two archi-
tectures, visualized in Fig. 2 (b), is a two-dimensional convolution
neural network (CNN) with a regression output layer [20]. Note
that this CNN is not proposed as an optimal model, but is employed
in this work as a proof of concept. The second model, a feedfor-
ward neural network (FNN) was chosen because it is built into the
hardware on the Syntiant NDP [18]. Its architecture is shown in
Fig. 2 (c).

Distinct instances of both architectures were trained with each
of the feature sets shown in Fig. 2 (a). Additionally, the FNN was
trained with the proprietary feature set created for the Syntiant hard-
ware accessable on Edge Impulse. Model training was performed
using the wake words spoken by each participant individually, with
8880 wake word recordings split into training and validation sets
with a ratio of 80:20. The remaining 2220 recordings were used to
test each model. The models were trained to minimize the mean
square error between the predicted angle and the ground truth. Note
that because the models were each trained with only one voice, they
serve as speaker-dependent proofs of concept. Generalization to
a speaker-independent model is out of the scope of this work, al-
though the results here suggest that these methods will generalize
to a wide range of voices with different spectral content.

3.4. Evaluation Metric

Each model is evaluated on its ability to correctly predict the true
incident angle ✓i within a defined angular tolerance ±�✓i. Fol-
lowing [21, 22], the reliability with which the model estimates the
DOA of the speech source is expressed as the number of correct
predictions within ±�✓i, divided by the total number of utterances
tested. Experimental results are reported for angular tolerances of
5�, 10�, and 20�, consistent with the resolutions used in previous
experiments [23].

4. RESULTS AND DISCUSSION

The reliability with which each model is able to estimate the DOA
of the speech signal is shown in Table 1 various for angular tol-
erances. The CNN was able to estimate the DOA of both partic-
ipant’s voices to within ±5� with up to 98.3% reliability using a
single structural vibration sensor. The models trained with MFCC
features under-performed the models trained with the more spec-
trally complete Mel and magnitude spectrogram feature sets. Ad-
ditionally, the CNNs trained with magnitude spectrograms as fea-
tures out-performed those using Mel spectrograms. This may be
due to the linear spacing of the frequency bins in the magnitude
spectrogram. At sufficiently high frequencies, a large number of the
panel’s bending modes are excited simultaneously [24, 25]. In this
frequency region of high modal overlap, individual modes are no
longer discernible, which mitigates the ability of the structural sen-
sor to relate the modal excitations given by (5) to a specific angle
of incidence. Therefore, the logarithmic nature of the Mel spectro-
gram may result in less efficient utilization of spectral information
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Reliability (%) of DOA Estimates to within:
Network Feature ±5� ±10� ±20� ±5� ±10� ±20�

CNN
MFCC 89.1 99.3 100 82.5 98.3 99.7

Mel-Spect 92.7 99.4 100 92.9 99.5 100
Mag-Spect 97.1 99.8 100 98.3 99.9 100

FNN

MFCC 82.2 97.3 99.7 78.9 96.7 99.5
Mel-Spect 94.3 99.9 100 87.9 99.6 100
Mag-Spect 76.7 96.7 99.8 82.7 99.2 100

Syntiant 99.7 100 100 99.9 100 100
Voice Male Female

Table 1: Reliability of the DOA estimates made by the trained
CNNs and the FNNs with angular tolerances of 5�, 10�, and 20�.
Distinct models were trained for each feature set and speaker.

in the low-frequency region where low modal overlap occurs, and
individual modes dominate the panel’s spatial response. The use of
panel-specific spectral features that optimize the bandwidths where
individual modes are discernible is left to future work.

The FNNs trained with non-proprietary feature sets were able
to estimate the DOA of both participant’s voices to within ±5�

with up to 94.3% reliability. As was the case for the CNNs, the
FNNs trained with MFCC features under-performed those trained
with the other feature sets. However, the FNNs trained with Mel
spectrograms generally outperformed the models trained with mag-
nitude spectrograms. This may be related to the limitations imposed
on training time by Edge Impulse, as the magnitude spectrograms
were the largest features used in this experiment. Edge Impulse
recently introduced the ability to deploy pre-trained models within
their framework, so re-training the FNN architecture with these fea-
ture sets in an offline setting will enable direct comparison of the
results from the two networks when large feature vectors are em-
ployed, and will be explored in future work.

The FNN trained with the proprietary feature set created for
the Syntiant hardware performed very well when acting on the test
set, as it estimated the DOA of both participant’s voices to within
±5� with up to 99.9% reliability. Although this model is currently
device-specific, the reported reliability of models trained with this
hardware-informed feature set is an important result that may lead
to the development of an optimized, full-stack system.

It is important to note that all of the trained models were able to
estimate the DOA of both participant’s voices to within ±10� with
greater than 96% reliability. Comparing the results across the vari-
ous angular tolerances suggests that the DOA estimates returned by
the models are distributed around the true incident angles. This dis-
tribution is apparent in Fig. 3, which shows the aggregate confusion
matrix for the CNNs trained with the female voice with an angular
tolerance of ±5�.

We wish to acknowledge some important limitations in the ex-
perimental setup. First, the wake word recordings used to train the
models were made by a panel mounted in a relatively quiet semi-
anechoic chamber. However, the presence of environmental noise
may adversely affect the reliability of the trained models. Testing
the reliability of the models in noisy environments is an important
future step. It is likely that significant additional training data or the
implementation of de-noising methods will be necessary for reliable
model performance in more realistic environments.

In addition, each model was trained and tested on only one par-
ticipant’s voice at a time. As such, results are reported from models
that are implicitly speaker-dependent. Generalizing to a speaker-
independent model will require much more training data. However,
it is encouraging that the reported results from the trained models

Figure 3: Confusion matrix showing the distribution of the DOA es-
timates returned by the CNN models trained with the female voice.
The bin size is chosen to visualize an angular tolerance of ±5�.

are generally consistent across both voices. This suggests that the
proposed single-sensor DOA method may be adaptable to various
speech characteristics, as the voices used were inclusive of a wide
range of vocal timbres.

5. CONCLUSIONS

The reported results provide experimental evidence that a single
sensor affixed to an elastic panel may be utilized to perform reli-
able DOA estimation from recorded speech signals. In addition,
the models and feature sets utilized in this work are all compact
enough to be implemented within the constraints imposed by com-
mercially available embedded/edge hardware. In particular, the per-
formance of the FNN trained with the proprietary, hardware-specific
feature set suggests the possibility of designing a highly-reliable,
full-stack DOA estimation system utilizing the described methods.
The trained models are presented here as a proof of concept, as
they were determined for only two speakers and were tested with-
out the presence of significant environmental noise. However, this
does represent an important step toward demonstrating that the pre-
sented methods enable the DOA of a speech signal to be reliably
estimated using a single sensor under these conditions. The ubiq-
uitous time-delay and phase-based approaches to DOA estimation
require transducer arrays with multiple sensing elements. Reduc-
ing the number of sensors needed to perform the tasks required by
modern smart devices may lower their power consumption, manu-
facturing cost, and computational requirements, while offering the
ability to integrate the sensor into built environments without sacri-
ficing form-factor.
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Average Reliability (%) within:
Material # Sensors ±5� ±10� ±20�

1 77.2 93.3 98.0
Acrylic 3 98.6 99.8 100

5 99.0 99.9 100

Table 1

1

Two participants, one male and one female, each recorded 300 sentences containing
common phrases used to interact with smart audio devices. The participants started each
sentence with “Hey, Alexa”, the wake word phrase commonly used to activate Amazon’s
line of smart devices. These wake word recordings were then set incident to an acrylic
panel at angles of incidence ranging from −90° to +90° in 5° increments. The panel’s
response to each excitation was recorded using a single structural vibration sensor affixed
to the panel.

From these recorded panel responses, feature vectors containing MFCCs, Mel
spectrograms, and magnitude spectrograms were extracted. Examples of these features
are visualized at left using Edge Impulse (edgeimpulse.com). Additionally, a proprietary
feature set created for edge hardware developed by Syntiant (syntiant.com) was extracted
from the panel’s responses. The Syntiant’s tiny machine learning (TinyML) development
board features an always-on neural decision processor (NDP) for performing wake word
detection and other real-time speech processing tasks.

These feature vectors were used to train two architectures that are compatible with
TinyML and are compact enough to be embedded onto commercially available edge
devices. The first architecture is a two-dimensional convolution neural network (CNN)
with a regression output layer. The second model, a feedforward neural network (FNN)
was chosen because of its compatibility with the hardware design of the Syntiant NDP.


