Estimating the Direction of Arrival of a Spoken Wake Word using a Single Sensor on an Elastic Panel
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The vibrations induced in an elastic panel from an incident acoustic
pressure wave are a function of the resonant mode structure of the panel
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on embedded/edge hardware commonly used in smart audio devices. recordings of an elastic panel's vibrational response to acoustic waves '

The trained models estimated the DOA of the wake word utterance to containing the speech sound “eh” incident at -30, 0', and 45, measured

within #5° with an average reliability of 83.1% when using MFCCs as using a single structural vibration sensor. This figure demonstrates that the
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reported reliability of 99.9%, when using Mel and magnitude . Structural network may therefore utilize an MFCC vector to create decision boundaries miosk Sl | our recent publication in the
spectrograms and an addit.ional hardware—spe;iﬂc feature set, suggesting & and estimate the DOA of the excitation using information from a single skl lty Journal of Sound and
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MFCCs (Normalized) - Two participants, one male and one female, each recorded 300 sentences containing
> [ I common phrases used to interact with smart audio devices. The participants started each
; £ ! 1 [ , I 1 sentence with “Hey, Alexa”, the wake word phrase commonly used to activate Amazon's
Smart aCOUStl.C SUTTdCE S e Mounting sensors internally Extended surfaces allow £ 11 ine of smart devices. These wake word recordings were then set incident to an acrylic
for seamless Iintegration of a to the dicpl liminates th for sighal processing . 1 : panel at angles of incidence ranging from -90° to +90° in 5 increments. The panel’s
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environments, as any surface NG he gevice’s vvate,r be placed further apart than ; (1 P o
(such 3s picture frames and . . the standard 1-4 cm on il 1 From these recorded p.)anel responses, feature vectors containing MFCCs, Mel
twork) can be used resistance and durability e P e 00 02 o4 o056 0% spectrograms, and magnitude spectrograms were extracted. Examples of these features
ar odern sma EVICesS | Time (seconds) are visualized at left using Edge Impulse (edgeimpulse.com). Additionally, a proprietary
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feature set created for edge hardware developed by Syntiant (syntiant.com) was extracted
from the panel's responses. The Syntiant's tiny machine learning (TinyML) development
board features an always-on neural decision processor (NDP) for performing wake word
detection and other real-time speech processing tasks.

6536

3725

N
o
o
|

By coupling to a modal
surface, direction of arrival
estimation and beamforming
can occur with as few as one e BEREE I
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These feature vectors were used to train two architectures that are compatible with
TinyML and are compact enough to be embedded onto commercially available edge
devices. The first architecture is a two-dimensional convolution neural network (CNN)
with a regression output layer. The second model, a feedforward neural network (FNN)
was chosen because of its compatibility with the hardware design of the Syntiant NDP.
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The reliability with which each model estimated the DOA of the speech
source to within various angular tolerances is tabulated at right. The
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Is currently device-specific, the reported reliability of models trained Voice Male Fernale

with this hardware-informed feature set is an important result that may

lead to the development of an optimized, full-stack system.




